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Abstract

Many natural language processing (NLP) tasks can
be generalized into segmentation problem. In this
paper, we combine semi-CRF with neural network
to solve NLP segmentation tasks. Our model repre-
sents a segment both by composing the input units
and embedding the entire segment. We thoroughly
study different composition functions and different
segment embeddings. We conduct extensive exper-
iments on two typical segmentation tasks: named
entity recognition (NER) and Chinese word seg-
mentation (CWS). Experimental results show that
our neural semi-CRF model benefits from repre-
senting the entire segment and achieves the state-
of-the-art performance on CWS benchmark dataset
and competitive results on the CoNLLO03 dataset.

1 Introduction

Given an input sequence, segmentation is the problem of
identifying and assigning tags to its subsequences. Many
natural language processing (NLP) tasks can be cast into
the segmentation problem, like named entity recognition
[Okanohara er al., 2006], opinion extraction [Yang and
Cardie, 2012], and Chinese word segmentation [Andrew,
2006]. Properly representing segment is critical for good
segmentation performance. Widely used sequence labeling
models like conditional random fields [Lafferty ef al., 2001]
represent the contextual information of the segment bound-
ary as a proxy to entire segment and achieve segmentation by
labeling input units (e.g. words or characters) with bound-
ary tags. Compared with sequence labeling model, models
that directly represent segment are attractive because they
are not bounded by local tag dependencies and can effec-
tively adopt segment-level information. Semi-Markov CRF
(or semi-CRF) [Sarawagi and Cohen, 2004] is one of the
models that directly represent the entire segment. In semi-
CRE, the conditional probability of a semi-Markov chain on
the input sequence is explicitly modeled, whose each state
corresponds to a subsequence of input units, which makes
semi-CRF a natural choice for segmentation problem.
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However, to achieve good segmentation performance, con-
ventional semi-CRF models require carefully hand-crafted
features to represent the segment. Recent years witness a
trend of applying neural network models to NLP tasks. The
key strengths of neural approaches in NLP are their ability for
modeling the compositionality of language and learning dis-
tributed representation from large-scale unlabeled data. Rep-
resenting a segment with neural network is appealing in semi-
CRF because various neural network structures [Hochreiter
and Schmidhuber, 1997] have been proposed to compose se-
quential inputs of a segment and the well-studied word em-
bedding methods [Mikolov et al., 2013] make it possible to
learn entire segment representation from unlabeled data.

In this paper, we combine neural network with semi-CRF
and make a thorough study on the problem of representing
a segment in neural semi-CRF. Kong et al. [2015] proposed
a segmental recurrent neural network (SRNN) which repre-
sents a segment by composing input units with RNN. We
study alternative network structures besides the SRNN. We
also study segment-level representation using segment em-
bedding which encodes the entire segment explicitly. We
conduct extensive experiments on two typical NLP segmen-
tation tasks: named entity recognition (NER) and Chinese
word segmentation (CWS). Experimental results show that
our concatenation alternative achieves comparable perfor-
mance with the original SRNN but runs 1.7 times faster and
our neural semi-CRF greatly benefits from the segment em-
beddings. In the NER experiments, our neural semi-CRF
model with segment embeddings achieves an improvement
of 0.7 F-score over the baseline and the result is competi-
tive with state-of-the-art systems. In the CWS experiments,
our model achieves more than 2.0 F-score improvements
on average. On the PKU and MSR datasets, state-of-the-
art F-scores of 95.67% and 97.58% are achieved respec-
tively. We release our code at https://github.com/
ExpResults/segrep—-for-nn-semicrf.

2 Problem Definition

Figure 1 shows examples of named entity recognition and
Chinese word segmentation. For the input word sequence
in the NER example, its segments (“Michael Jordan”:PER,
“is”:NONE, “a”’:NONE, “professor”’:NONE, “at”:NONE,
“Berkeley”:ORG) reveal that “Michaels Jordan” is a person
name and “Berkeley” is an organization. In the CWS exam-
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Figure 1: Examples for named entity recognition (above) and
Chinese word segmentation (below).

ple, the subsequences (“Vii 4</Pudong”, “J & /development”,
“L/and”, “# /construction”) of the input character se-
quence are recognized as words. Both NER and CWS take
an input sequence and partition it into disjoint subsequences.

Formally, for an input sequence x = (1, .., Z|x|) of length
|x|, let z,., denote its subsequence (z, ..., Tp). A segment of
x is defined as (u,v,y) which means the subsequence .,
is associated with label y. A segmentation of x is a segment
sequence s = (1, .., p), where s; = (u;j,v;,y;) andujq =
v; + 1. Given an input sequence x, the segmentation problem
can be defined as the problem of finding x’s most probable
segment sequence s.

3 Neural Semi-Markov CRF

Semi-Markov CRF (or semi-CRF, Figure 2a) [Sarawagi and
Cohen, 2004] models the conditional probability of s on x as

1
= 700 exp{W - G(x,s)}
where G(x, s) is the feature function, W is the weight vector
and Z(x) = > cg exp{W-G(x,s’)} is the normalize factor
of all possible segmentations S over x.

By restricting the scope of feature function within a seg-
ment and ignoring label transition between segments (0O-
order semi-CRF), G(x,s) can be decomposed as G(x,s) =

5.’:1 g(x, s;) where g(x, s;) maps segment s; into its rep-
resentation. Such decomposition allows using efficient dy-
namic programming algorithm for inference. To find the best
segmentation in semi-CRF, let «; denote the best segmenta-
tion ends with j™ input and «; is recursively calculated as

p(s[x)

aj = maxy\Il(j - lajv y) +aj—l—l

1=1..L,
where L is the maximum length manually defined and ¥ (j —
l,7,y) is the transition weight for s = (j — [, 7, y) in which
\IJ(J - Za]vy) =W g(X, 3)'

Previous semi-CRF works [Sarawagi and Cohen, 2004;
Okanohara et al., 2006; Andrew, 2006; Yang and Cardie,
2012] parameterize g(x, s) as a sparse vector, each dimension
of which represents the value of corresponding feature func-
tion. Generally, these feature functions fall into two types:
1) the CRF style features which represent input unit-level in-
formation such as “the specific words at location ¢ 2) the
semi-CRF style features which represent segment-level infor-
mation such as “the length of the segment”.

Kong et al. [2015] proposed the segmental recurrent neural
network model (SRNN, see Figure 2b) which combines the

semi-CRF and the neural network model. In SRNN, g(x, s)
is parameterized as a bidirectional LSTM (bi-LSTM). For a
segment s; = (u;, v;,Y;), each input unit = in subsequence
(T, .., Ty,;) is encoded as embedding and fed into the bi-
LSTM. The rectified linear combination of the final hidden
layers from bi-LSTM is used as g(x, s). Kong et al. [2015]
pioneers in representing a segment in neural semi-CRF. Bi-
LSTM can be regarded as “neuralized” CRF style features
which model the input unit-level compositionality. However,
in the SRNN work, only the bi-LSTM was employed with-
out considering other input unit-level composition functions.
What is more, the semi-CRF styled segment-level informa-
tion as an important representation was not studied. In the
following sections, we first study alternative input unit-level
composition functions (3.1). Then, we study the problem of
representing a segment at segment-level (3.2).

3.1 Alternative Seg-Rep. via Input Composition

Segmental CNN

Besides recurrent neural network (RNN) and its variants, an-
other widely used neural network architecture for composing
and representing variable-length input is the convolutional
neural network (CNN) [Collobert et al., 2011]. In CNN, one
or more filter functions are employed to convert a fix-width
segment in sequence into one vector. With filter function
“sliding” over the input sequence, contextual information is
encoded. Finally, a pooling function is used to merge the
vectors into one. In this paper, we use a filter function of
width 2 and max-pooling function to compose input units of
a segment. Following SRNN, we name our CNN segment
representation as SCNN (see Figure 2c).

However, one problem of using CNN to compose input
units into segment representation lies in the fact that the max-
pooling function is insensitive to input position. Two different
segments sharing the same vocabulary can be treated without
difference. In a CWS example, “BRFASZ” (racket for sell) and
“}93ZFK” (ball audition) will be encoded into the same vec-
tor in SCNN if the vector of “4f3Z” that produced by filter
function is always preserved by max-pooling.

Segmental Concatenation

Concatenation is also widely used in neural network models
to represent fixed-length input. Although not designed to han-
dle variable-length input, we see that in the inference of semi-
CRF, a maximum length L is adopted, which make it possi-
ble to use padding technique to transform the variable-length
representation problem into fixed-length of L. Meanwhile,
concatenation preserves the positions of inputs because they
are directly mapped into the certain positions in the resulting
vector. In this paper, we study an alternative concatenation
function to compose input units into segment representation,
namely the SCONCATE model (see Figure 2d). Compared
with SRNN, SCONCATE requires less computation when
representing one segment, thus can speed up the inference.

3.2 Seg-Rep. via Segment Embeddings

For segmentation problems, a segment is generally consid-
ered more informative and less ambiguous than an individ-
ual input. Incorporating segment-level features usually lead



(a) semi-CRF (b) SRNN
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Figure 2: An illustration for the semi-CRF, SRNN, SCNN and SCONCATE. In these figures, circles represent the inputs, blue
rectangles represent factors in graphic model and yellow rectangles represent generic nodes in the neural network model.
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Figure 3: Our neural semi-CRF model with segment repre-
sentation from input composition and segment embeddings.

performance improvement in previous semi-CRF work. Seg-
ment representations in Section 3.1 only model the composi-
tion of input units. It can be expected that the segment em-
bedding which encodes an entire subsequence as a vector can
be an effective way for representing a segment.

In this paper, we treat the segment embedding as a lookup-
based representation, which retrieves the embedding table
with the surface string of entire segment. With the entire
segment properly embed, it is straightforward to combine the
segment embedding with the composed vector from the input
so that multi-level information of a segment is used in our
model (see Figure 3). However, how to obtain such embed-
dings is not a trivial problem.

A natural solution for obtaining the segment embeddings
can be collecting all the “correct” segments from training data
into a lexicon and learning their embeddings as model pa-
rameters. However, the in-lexicon segment is a strong clue
for a subsequence being a correct segment, which makes our
model vulnerable to overfitting. Unsupervised pre-training
has been proved an effective technique for improving the ro-
bustness of neural network model [Erhan et al., 2010]. To
mitigate the overfitting problem, we initialize our segment
embeddings with the pre-trained one.

Word embedding gains a lot of research interest in recent
years [Mikolov et al., 2013] and is mainly carried on English
texts which are naturally segmented. Different from the word
embedding works, our segment embedding requires large-
scale segmented data, which cannot be directly obtained. Fol-
lowing Wang et al. [2011] which utilize automatically seg-
mented data to enhance their model, we obtain the auto-
segmented data with our neural semi-CRF baselines (SRNN,
SCNN, and SCONCATE) and use the auto-segmented data to
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Figure 4: An example for fine-tuning decreases the
generalization power of pre-trained segment embedding.
“1994_World_Cup” does not occur in the training data and
its similarity with “1998_World_Cup” is broken because
“1998_World_Cup” is tuned.

learn our segment embeddings.

Another line of research shows that machine learning algo-
rithms can be boosted by ensembling heterogeneous models.
Our neural semi-CRF model can take knowledge from het-
erogeneous models by using the segment embeddings learned
on the data segmented by the heterogeneous models. In this
paper, we also obtain the auto-segmented data from a con-
ventional CRF model which utilizes hand-crafted sparse fea-
tures. Once obtaining the auto-segmented data, we learn the
segment embeddings in the same with word embeddings.

A problem that arises is the fine-tuning of segment em-
beddings. Fine-tuning can learn a task-specific segment em-
beddings for the segments that occur in the training data, but
it breaks their relations with the un-tuned out-of-vocabulary
segments. Figure 4 illustrates this problem. Since OOV seg-
ments can affect the testing performance, we also try learning
our model without fine-tuning the segment embeddings.

3.3 Model details

In this section, we describe the detailed architecture for our
neural semi-CRF model.

Input Unit Representation

Following Kong et al. [2015], we use a bi-LSTM to represent
the input sequence. To obtain the input unit representation,
we use the technique in Dyer et al. [2015] and separately
use two parts of input unit embeddings: the pre-trained em-
beddings E? without fine-tuning and fine-tuned embeddings
E*. For the ith input, E¥ and E! are merged together through
linear combination and form the input unit representation

I, = RELU(WZ[EP; E!] + bF)



fixed input unit embedding E? size | 100
fine tuned input unit embedding E? size | 32
input unit representation [; size | 100
LSTM hidden layer H; size | 100
seg-rep via input composition SCOMP | 64
seg-rep via segment embedding SEMB | 50
label embedding E,, size | 20
final segment representation S; size | 100

Table 1: Hyper-parameter settings

where the notation of W[Xy;..; X,,] equals to Xy,.., X,,’s
linear combination W1 X7 + .. + W,, X,, and b’ is the bias.
After obtaining the representation for each input unit, a se-
quence (I1, ..., Ij|) is fed to a bi-LSTM. The hidden layer of

forward LSTM ﬁl and backward LSTM E are combined as
H; = RELU(WH[H}; ;) + b*)
and used as the 7" input unit’s final representation.

Segment Representation

Given a segment s; = (uj,v;,y,), a generic function
SComP(Hy,, ..., H,,) stands for the segment representation
that composes the input unit representations (Hy;, .., Hy,).
In this work, SCOMP is instantiated with three differ-
ent functions: SRNN, SCNN and SCONCATE. Besides
composing input units, we also employ the segment em-
beddings as segment-level representation. Embedding of
the segment s; = (u;,v;,y;) is denoted as a generic
function SEMB(xuj...xUj) which converts the subsequence
(T .-y Ty, ) into its embedding through a lookup table. At
last, the representation of segment s; is calculated as

S; = RELU(W®[SComP;; SEMB;; By | +b°)

where EY is the embedding for the label of a segment.
Throughout this paper, we use the same hyper-parameters
for different experiments as listed in Table 1.

Training Procedure

In this paper, negative log-likelihood is used as learning ob-
jective. We follow Dyer et al. [2015] and use stochastic gra-
dient descent to optimize model parameters. Initial learning
rate is set as 779 = 0.1 and updated as n; = /(1 + 0.1¢)
on each epoch t. Best training iteration is determined by the
evaluation score on development data.

4 Experiment

We conduct our experiments on two NLP segmentation tasks:
named entity recognition and Chinese word segmentation.

4.1 Dataset and Word Embedding

For NER, we use the CoNLLO3 dataset which is widely
adopted for evaluating NER models’ performance. F-score
is used as evaluation metric.!

For CWS, we follow previous study and use three Sim-
plified Chinese datasets: PKU and MSR from 2™ SIGHAN

'conlleval script in CONLLO3 shared task is used.

bakeoff and Chinese Treebank 6.0 (CTB6). For the PKU and
MSR datasets, last 10% of the training data are used as de-
velopment data as [Pei et al., 2014] does. For CTB6 data,
recommended data split is used. We convert all the double
byte digits and letters in the PKU data into single byte. Like
NER, CWS performance is evaluated by F-score.”

Unlabeled data are used to learn both the input unit embed-
dings (word embedding for NER, character embedding for
CWS) and segment embeddings. For NER, we use RCV1
data as our unlabeled English data. For CWS, Chinese gi-
gawords is used as unlabeled Chinese data. Throughout this
paper, we use the word embedding toolkit released by Ling
et al. [2015] to obtain both the input unit embeddings and
segment embeddings.?

4.2 Baseline
We compare our models with three baselines:

1. SPARSE-CRF: The CRF model using sparse hand-
crafted features.

2. NN-LABELER: The neural network sequence labeling
model making classification on each input unit.

3. NN-CRF: The neural network CRF which models the
conditional probability of a label sequence over the input
sequence.

BIESO-tag schema is used in all the CRF and sequence la-
beling models.* For SPARSE-CRF, we use the baseline fea-
ture templates in Guo et al. [2014] for NER and Jiang et al.
[2013]’s feature templates for CWS. Both NN-LABELER and
NN-CREF take the same input unit representation as our neu-
ral semi-CRF models but vary on the output structure and do
not explicitly model segment-level information.

4.3 Comparing Different Input Composition
Functions

We first consider the problem of representing segments via
composing input units and compare different input composi-
tion functions. Results on NER and CWS data are shown in
Table 2. From this table, the SRNN and SCONCATE achieve
comparable results and perform better than the SCNN. Al-
though CNN can model input sequence at any length, its in-
variance to the exact position can be a flaw in representing
segments. The experimental results confirm that and show
the importance of properly handling the input position. Con-
sidering SCNN’s relatively poor performance, we only study
SRNN and SCONCATE in the following experiments.
Comparing with NN-LABELER, structure prediction mod-
els (NN-CRF and neural semi-CRF) generally achieve bet-
ter performance. The best structure prediction model outper-
forms NN-LABELER by 0.4% on NER and 1.11% averagely
on CWS according to Table 2. But the difference between
the neural structure prediction models is not significant. NN-
CRF performs better than the best neural semi-CRF model

Zscore script in 2™ SIGHAN bakeoff is used.

Shttps://github.com/wlinl2/wang2vec

40 tag which means OUTSIDE is not adopted in CWS experi-
ments since CWS doesn’t involve assigning tags to segments.



NER CWS
CoNLLO03 CTB6 PKU MSR
model dev test dev test dev test dev test spd
NN-LABELER || 93.03 88.62 | 93.70 93.06 93.57 9299 9322 93.79 | 3.30
baseline NN-CRF || 93.06 89.08 | 9433 93.65 94.09 93.28 93.81 94.17 | 2.72
SPARSE-CRF || 88.87 8343 | 95.68 95.08 9585 95.06 96.09 96.54
SRNN [[ 9297 88.63 | 94.56 94.06 9486 9391 9438 95.21 | 0.62
neural semi-CRF | SCONCATE || 9296 89.07 | 9434 9396 94.41 93.57 94.05 94.53 | 1.08
SCNN || 91.53 87.68 | 87.82 87.51 79.64 80.75 8504 85.79 | 1.46

Table 2: The NER and CWS results of the baseline models and our neural semi-CRF models with different input composition
functions. spd represents the inference speed and is evaluated by the number of tokens processed per millisecond.
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Figure 5: Negative log-likelihood (blue lines) and devel-
opment F-score (red lines) by iterations. Solid lines show
the model with randomly initialized segment embeddings.
Dashed lines show that initialized with pre-trained.

(SCONCATE) on NER while the both SRNN and SCON-
CATE outperform NN-CRF on three CWS datasets. We ad-
dress this to the fact either the NN-CRF or the neural semi-
CRF merely takes input-level information and not sufficiently
adopts segment-level information into the models.

A further comparison on inference speed shows that
SCONCATE runs 1.7 times faster than SRNN, but slower
than the NN-LABELER and NN-CRF, which is resulted from
the intrinsic difference in time complexity.

4.4 Comparing Different Segment Embeddings

Next we study the effect of different segment embeddings.
Using a segmentation model, we can obtain auto-segmented
unlabeled data, then learn the segment embeddings. In this
paper, we tried two segmentation models. One is the neural
semi-CRF baseline which represents segment by composing
input and another one is the CRF model using sparse hand-
crafted features. For convenience, we use SEMB-HOMO
and SEMB-HETERO to note the segment embeddings learned
from their auto-segmented data respectively.

Effect of Pre-trained Segment Embeddings

We first incorporate randomly initialized segment embed-
dings into our model and tune the embeddings along with
other parameters. However our preliminary experiments of
adding these embeddings into SRNN witness a severe drop
of F-score on the CoONLLO03 development set (from 92.97% to
77.5%). A further investigation shows that the randomly ini-
tialized segment embeddings lead to severe overfitting. Fig-
ure 5 shows the learning curve in training the NER model.

model || CoNLLO3 | CTB6 PKU MSR
SRNN 92.97 94.56 9486 94.80

~ +SEMB-HoMO W/FT || 92.97 | 9583 9670 97.32
+SEMB-HOMO WO/FT 93.14 9591 96.64 96.59
SCONCATE 92.96 94.34 9441 94.05

~ +SEMB-HoMO W/FT || 93.07 | 9579 9675 97.29
+SEMB-HOMO WO/FT 93.36 95.88 96.50 96.44
[e]0)Y 46.02 5.45 5.80  2.60

Table 3: Effect of fine-tuning (FT) segment embedding on
development data. For CONLLO3 data, a named entity is “out-
of-vocabulary” when it is not included in the training data as
a named entity.

From this figure, the model with randomly initialized segment
embeddings converge to the training data at about 5% itera-
tion and the development performance stops increasing at the
same time. However, by initializing with SEMB-HOMO, the
development set performance increase to 93%, which shows
the necessity of pre-trained segment embeddings.

Effect of Fine-tuning Segment Embeddings

We study the effect of fine-tuning the segment embeddings
by imposing SEMB-HOMO into our model. Table 3 shows
the experimental results on development data. We find that
our models benefit from fixing the segment embeddings on
CoNLLO03. While on MSR, fine-tuning the embeddings
helps. Further study on the out-of-vocabulary rate shows that
the OOV rate of MSR is very low, thus fine-tuning on segment
embeddings help to learn a better task-specified segment rep-
resentation. However, on CoNLL03 data whose OOV rate is
high, fine-tuning the segment embedding harms the general-
ization power of pre-trained segment embeddings.

Effect of Heterogeneous Segment Embeddings

In previous sections, our experiments are mainly carried on
the segment embeddings obtained from homogeneous mod-
els. In this section, we use our SPARSE-CRF as the het-
erogeneous model to obtain SEMB-HETERO. We compare
the models with SEMB-HETERO and SEMB-HOMO on the
development data in Figure 6. These results show that
SEMB-HETERO generally achieve better performance than
the SEMB-HOMO. On the CoNLL03 and MSR dataset, the
differences are significant. Meanwhile, we see that fine-
tuning the segment embedding can narrow the gap between
SEMB-HETERO and SEMB-HOMO.
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Figure 6: Comparison between models with SEMB-HOMO
and SEMB-HETERO on development data. The rows show
different baseline neural semi-CRF models and the columns
show whether fine-tuning (FT) the segment embeddings.

model || CoNLLO3 | CTB6 PKU MSR
NN-LABELER 88.62 93.06 9299 93.79
NN-CRF 89.08 93.65 93.28 94.17
SPARSE-CRF 83.43 95.08 95.06 96.54
SRNN 88.63 94.06 9391 9521
+SEMB-HETERO 89.59 9548 9560 97.39
+0.96 +142 +1.69 +2.18

R SCONCATE || 89.07 | 9396 9357 9453
+SEMB-HETERO 89.77 9542 95.67 97.58
+0.70 +1.43 +2.10 +3.05

Table 4: Comparison between baselines and our neural semi-
CRF model with segment embeddings.

Final Result

At last, we compare our neural semi-CRF model leverag-
ing additional segment embeddings with those only represent
segment by composing input. Table 4 shows the result on
the NER and CWS test data. Style of segment embeddings
(HoMoO or HETERO) and whether fine-tune it is decided by
the development data. From this result, we see that segment-
level representation greatly boost up model’s performance.
On NER, an improvement of 0.7% is observed and that im-
provement on CWS is more than 2.0% on average.

We compare our neural semi-CRF model leveraging multi-
levels segment representation with other state-of-the-art NER
and CWS systems. Table 5 shows the NER comparison re-
sults. The first block shows the results of neural NER mod-
els and the second one shows the non-neural models. All
these work employed hand-crafted features like capitaliza-
tion. Collobert et al. [2011], Guo et al. [2014], and Pas-
sos et al. [2014] also utilize lexicon as an additional knowl-
edge resource. Without any hand-crafted features, our model
can achieve comparable performance with the models utiliz-
ing domain-specific features.

Table 6 shows the comparison with the state-of-the-art
CWS systems. The first block of Table 6 shows the neural
CWS models and second block shows the non-neural models.
Our neural semi-CRF model with multi-level segment repre-
sentation achieves the state-of-the-art performance on PKU
and MSR data. On CTB6 data, our model’s performance is
also close to Wang et al. [2011] which uses semi-supervised
features extracted auto-segmented unlabeled data. Accord-

genre model || CoNLLO3
NN [Collobert et al., 2011] 89.59
[Huang et al., 2015] 90.10
R [Ando and Zhang, 20051 || 8031
non-NN [Guo et al., 2014] 88.58
[Passos et al., 2014] 90.90
our best 89.77

Table 5: Comparison with the state-of-the-art NER systems.

genre model || CTB6 PKU MSR
[Zheng et al., 2013] - 924 933
NN [Pei et al., 2014] 94.0 949
[Pei et al., 2014] w/bigram - 952 972
[Kong er al., 2015] 90.6  90.7
I [Tseng, 20051 || - 950 964
non-NN [Zhang and Clark, 2007] - 95.1 972
[Sun ez al., 2009] - 952 973
[Wang et al., 2011] || 95.7 - -
our best || 95.48 95.67 97.58

Table 6: Comparison with the state-of-the-art CWS systems.

ing to Pei et al. [2014], significant improvements can be
achieved by replacing character embeddings with character-
bigram embeddings. However we didn’t employ this trick
considering the unification of our model.

5 Related Work

Semi-CRF has been successfully used in many NLP tasks like
information extraction [Sarawagi and Cohen, 2004], opinion
extraction [Yang and Cardie, 2012] and Chinese word seg-
mentation [Andrew, 2006; Sun et al., 2009]. Its combination
with neural network is relatively less studied. To the best of
our knowledge, our work is the first one that achieves state-
of-the-art performance with neural semi-CRF model.

Domain specific knowledge like capitalization has been
proved effective in named entity recognition [Ratinov and
Roth, 2009]. Segment-level abstraction like whether the seg-
ment matches a lexicon entry also leads performance im-
provement [Collobert et al., 2011]. To keep the simplicity
of our model, we didn’t employ such features in our NER ex-
periments. But our model can easily take these features and
it is hopeful the NER performance can be further improved.

Utilizing auto-segmented data to enhance Chinese word
segmentation has been studied in Wang et al. [2011]. How-
ever, only statistics features counted on the auto-segmented
data was introduced to help to determine segment boundary
and the entire segment was not considered in their work. Our
model explicitly uses the entire segment.

6 Conclusion

In this paper, we systematically study the problem of repre-
senting a segment in neural semi-CRF model. We propose
a concatenation alternative for representing segment by com-
posing input units which is equally accurate but runs faster
than SRNN. We also propose an effective way of incorpo-
rating segment embeddings as segment-level representation
and it significantly improves the performance. Experiments



on named entity recognition and Chinese word segmentation
show that the neural semi-CRF benefits from rich segment
representation and achieves state-of-the-art performance.
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