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Abstract
Distant supervised relation extraction (RE) has
been an effective way of finding novel relational
facts from text without labeled training data. Typi-
cally it can be formalized as a multi-instance multi-
label problem. In this paper, we introduce a novel
neural approach for distant supervised RE with spe-
cial focus on attention mechanisms. Unlike the
feature-based logistic regression model and compo-
sitional neural models such as CNN, our approach
includes two major attention-based memory com-
ponents, which are capable of explicitly capturing
the importance of each context word for modeling
the representation of the entity pair, as well as the
intrinsic dependencies between relations. Such im-
portance degree and dependency relationship are
calculated with multiple computational layers, each
of which is a neural attention model over an ex-
ternal memory. Experiment on real-world datasets
shows that our approach performs significantly and
consistently better than various baselines.

1 Introduction
Relation extraction (RE) aims at extracting semantic relations
between entities. Formally, given a sentence s with the an-
notated head entity eh and tail entity et, the goal of RE is
to predict the relations between eh and et. RE is a funda-
mental task in Natural Language Processing (NLP), and a
crucial component for building structured Knowledge Base
(KB) from free texts. Previous methods including feature-
based approaches [Zhang et al., 2006; Li et al., 2012] and
neural-based approaches [Nguyen and Grishman, 2015b] can
extract high-quality relational facts based on human annota-
tions. However, the heavy cost of annotation typically limits
the existing labeled data of RE in both scale and domains.

A promising RE paradigm that addresses this challenge is
distant supervision, which can automatically generate train-
ing data by aligning a database of relational facts with text
[Mintz et al., 2009]. Figure 1 shows a simple example for a
RE domain with two labels. Distant supervision will regard
all sentences (S1, S2, S3) that contain these two entities as
active instances. Therefore, it can be formalized as a multi-
instance multi-label classification problem.

Knowledge Base  
Triples:

Barack Obama, EmployedBy, United States

Barack Obama, BornIn, United States

Latent Label

EmployedBy

BornIn

---

Sentence

S1: United States President Barack Obama meets with 
NBA player LeBron James Today.

S2: Obama was born in the United States just as he 
has always said.

S3: Obama ran for the united States Senate in 2004.

Figure 1: Training sentences generated through distant supervision
for a knowledge base containing two facts.

To facilitate the modeling of texts, neural networks have
been widely explored in distant supervised RE and achieved
state-of-the-art results [Zeng et al., 2015; Lin et al., 2016;
Jiang et al., 2016]. Various neural networks such as Convolu-
tional Neural Network (CNN) and Recurrent Neural Network
(RNN) have been adopted [Zeng et al., 2014; Xu et al., 2015;
Vu et al., 2016] to learn the representation of each instance
(sentences), which is then used as the representation of the
corresponding entity pair for relation classification.

In this paper, we investigate effective neural attention
mechanisms for distant supervised RE. We base our approach
on the following two observations:
• Not all context words contribute equally to the inference

of relation for an entity pair. For example, in S2, “born”
is an important clue for the entity pair (Barack Obama,
United States) while “said” is much less important.
• There exists dependencies (e.g., entailment, conflict) be-

tween different relations, which is a crucial cue to infer
some instances with implicit relation expression. For in-
stance, if triple (A, capital, B) holds, another triple (A,
contains, B) will hold as well.

Therefore, a desirable solution should not only have the capa-
bility of explicitly capturing the importance of different con-
text words but also automatically learning the dependencies
between relations.

In pursuit of these goals, we propose a neural model
that includes two attention-based memory networks inspired
by the recent success of computational models with ex-
plicit memory [Sukhbaatar et al., 2015; Tang et al., 2016;
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Lin et al., 2016]. The first one is a a word-level memory
network, which learns the importance/weight of each con-
text word with regard to the specific entity pair. Then, the
entity pair representation will be computed as the semantic
composition of the soft-attended context words. Afterwards,
we present a two-layer relation-level attention-based memory
network. The first layer is to capture the weight of each active
instance, which addresses the wrong labeling problem [Lin et
al., 2016]. The second layer is to learn the dependencies be-
tween relations. The output of the second layer will be used
as the representation of the bag-of-instances for multi-label
relation classification. As every component is differentiable,
the entire model can be efficiently trained end-to-end with
gradient descent. Experimental results show that our model
achieve significant and consistent improvements in relation
extraction as compared with the state-of-the-art methods.

Our contributions can be summarized as follows:

• We present a novel neural architecture with two memory
networks, which is capable of modeling the semantic re-
latedness of the entity pair with its contexts words as
well as the dependencies between relations.

• Experiments on real-world datasets show that our ap-
proach significantly and consistently outperforms all
baselines.

2 Background
2.1 Memory Network
Memory network is a general machine learning framework
introduced by [Weston et al., 2014]. Its central idea is infer-
ence with a long-term memory component, which could be
read, written to, and jointly learned with the goal of using
it for prediction. Formally, a memory network consists of a
memory m and four components I, G, O and R, where m is
an array of objects such as an array of vectors. Let us take
question answering as an example to explain the work flow
of memory network. Given a list of sentences and a ques-
tion, the task aims to find evidences from these sentences and
generate an answer, e.g. a word. During inference, I com-
ponent reads one sentence si at a time and encodes it into a
vector representation. Then G component updates a piece of
memory mi based on current sentence representation. After
all sentences are processed, we get a memory matrixmwhich
stores the semantics of these sentences, each row representing
a sentence. Given a question q, memory network encodes it
into vector representation eq , and then O component uses eq
to select question related evidences from memory m and gen-
erates an output vector o. Finally, R component takes o as the
input and outputs the final response. [Sukhbaatar et al., 2015;
Rush et al., 2015; Tang et al., 2016] demonstrate that multiple
hops could uncover more abstractive evidences than single
hop, and could yield improved results on question answering
, summarization and sentiment classification.

2.2 Convolutional Neural Network
In this section, we briefly introduce how to model entity pair
semantic representation with CNN, as widely used in pre-
vious studies [Nguyen and Grishman, 2015a; Zeng et al.,

Obama
was 
born

in
the

United States   
as
he

said

Word Position 

Input 
Representation 

Feature 
Maps 

Sentence 
Representation 

Figure 2: Sentence-level feature extraction using CNN.

2014]. A CNN with three convolutional filters is illustrated
in Figure 2.

Denote a sentence consisting of n words as
{w1, w2, ...wi, ...wn}, and each word wi is mapped to
its embedding ei ∈ Rd. An additional position feature (PF)
is used to indicate the relative distance of the current word
to the two entities. A convolutional filter is a list of linear
layers with shared parameters. Let lcf be the width of a
convolutional filter, and Wcf , bcf be the shared parameters
of linear layers in the filter. The input of a linear layer is
the concatenation of word embeddings in a fixed-length
window size lcf . The output of a linear layer is calculated as
Ocf =Wcf · lcf +bcf , whereWcf ∈ Rd×lcf and bcf ∈ Rlen.
len is the output length of the linear layer. The output of each
convolutional filter is fed to a MaxPooling layer, resulting in
an output vector with fixed length.

3 Deep Memory Networks for Distant
Supervised Relation Extraction

This section describes our deep memory network approach
for distant supervised RE. We first give the task definition and
notations, following with an overview of our proposed neural
architecture. Then, we provide detailed formalizations of our
model in distant supervised RE, with special emphasize on
the two major memory components.

3.1 Task Definition and Notation
Given a set of sentences S = {s1, ..., si, ..., sn} consisting
of n sentences and an entity pair {eh, et} 1 occurring in all
sentences, distant supervised RE aims at predicting the rela-
tion of sentence set S towards the entity pair {eh, et}. For
example, in figure 1, entity pair (“Obama”, “United States”)
has two labels, “EmployedBy” and “BornIn”.

When dealing with a text corpus, we map each word into a
low dimensional, continuous and real-valued vector, which
is also known as word embeddings [Mikolov et al., 2013;
Pennington et al., 2014]. All the word vectors are stacked
in a word embedding matrix L ∈ Rdw×|V |, where dw is the

1In practice, an entity might be a multi-word expression such as
“United States”. For simplicity, we still consider entity as a single
word in this definition. And their entity representation is an average
of its constituting word vectors [Sun et al., 2015].
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Obama is the 44th President of the United States.
Obama ran for the United States Senate in 2004. 

... 

...
Obama was born in the United States as he said.

Entity Pair = (Obama, United States )

Sentence

Embedding

Obama was   born     in       the   United    as       he      said
States

Context words Context words

Entity Pair
Obama United 

States

LinearAttention
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Figure 3: Illustration of our deep memory networks with two computational layers (hops) for distant supervised RE.

dimension of word vector and |V | is vocabulary size. The em-
bedding of the ith word is notated as ei ∈ Rdw×1, which is a
column in the embedding matrix L. In addition, to specify the
position of each entity pair, we also use position embeddings
for all words in the sentence. Each content word has two rela-
tive positions to head entity eh and tail entity et, and they are
mapped to two different dp dimensional vectors separately.
For example in S1 from Figure 1, the relative distance from
the word “President” to head entity “Obama” is −2 and tail
entity ‘United States’ is 1. Finally, we concatenate the word
embeddings and position embeddings of all words and de-
note it as a vector sequence s = {e1, e2, ..., ei, ..., en}, where
ei ∈ Rd×1(d = dw + 2× dp).

3.2 An Overview of the Approach
In this section, we present an overview of our model for dis-
tant supervised RE, as illustrated in Figure 3. Specifically,
our model includes two major components, both of which are
built with deep memory networks.

Word-Level Memory Network Given a sentence s =
{w1, w2, ..., wi, ..., wl} and an entity pair, a word-level
memory network is used to model a distributed represen-
tation vs of this sentence towards the entity pair. To
simplify the interpretation, we consider entity pair as
two single words wh and wt. Context word vectors
{e1, ..., eeh−1, eeh+1, ..., eet−1, eet+1, ..., el} are stacked and
regarded as the external memory l ∈ Rd×(l−2), where l is the
sentence length.

An illustration of this network is given in bottom-left
dashed box of Figure 2. In the first computational layer (hop
1), we use the entity vector as input to adaptively select im-

portant evidences from memorym through an attention layer.
The output of the attention layer and the linear transforma-
tion of entity pair vector are summed and fed to the next layer
(hop 2). In a similar way, we stack multiple hops and run
these steps multiple times, so that more abstractive evidences
could be selected from the external memory m. The output
vector in the last hop is concatenated with the output of CNN
model (Section 2.2) and the resulting vector is considered as
the representation of sentence with regard to the entity pair.2

Relation-Level Memory Network Suppose there is a set
S = {s1, ..., si, ..., sn} contains n sentences for entity pair
(bag-of-instances) and each sentence si has a distributed rep-
resentation xi. We further propose a relation-level memory
network to generate a representation of the sentence set to-
wards the entity pair. Specifically, for different relations, each
entity pair has a different representation.

As shown in the bottom-right dashed box of Figure 2, we
build a two-layer memory network for each relation. In the
first layer, we follow [Lin et al., 2016] and use instance-level
attention to select the sentences which really express the cor-
responding relation. For relation ri-related memory network
, we randomly generate a vector vri which indicates the rep-
resentation of relation ri and use it to calculate the relevance
weight between relation ri and each sentence through a at-
tention layer. In the second layer, we develop a relation-level
attention model to learn the dependencies between relations.
For instance, if a person is a founder of company (A, founder,
B), we will know that A has high probability to be a major
shareholder of B (A, major shareholders, B). The input of this

2It is helpful to note that the parameters of attention and linear
layers are shared in different hops.
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layer is the output of the first attention layer and this input will
be used to calculate the dependency weights between relation
ri and other relation {r1, ..., ri−1, ri+1, ..., rk}. Finally, the
resulting representation is used for multi-label relation classi-
fication.

3.3 Word Attention
Here we introduce the word-attention model. The basic idea
of attention mechanism is that it assigns a weight (impor-
tance) to each lower position when computing an upper level
representation (Bahdanauet al., 2015). In this work, we use a
word-attention model to compute the representation of a sen-
tence with regard to an entity pair. The intuition is that con-
text words do not contribute equally to the semantic mean-
ing of a sentence. Furthermore, the importance of a word
should be different if we focus on different entity pairs. Let
us take the sentences “US President Barack Obama meets
NBA player LeBron James” as an example. The context word
“President” is more important than “player” for entity pair
(“US”, “Barack Obama”). On the contrary, “player” is more
important than “President” for entity pair (“NBA”, “LeBron
James”).

Taking an external memory m ∈ Rd×w and an entity pair
vector VEP ∈ R2d×1 (concatenating two entities) as input,
the attention model outputs a continuous vector x ∈ Rd×1,
which is a weighted sum of each piece of memory in m:

x =
w∑
i=1

αimi (1)

where w is the memory size, αi ∈ [0, 1] is the weight of mi

and
∑

i αi = 1. We implement a neural network based at-
tention model. For each piece of memory mi, we use a feed
forward neural network to compute its semantic relatedness
with the entity pair. The scoring function is calculated as fol-
lows:

gi = tanh(Wword−att[mi;weh;wet] + bword−att) (2)

where Wword−att ∈ R1×3d and bword−att ∈ R1×1. After
obtaining g1, g2, ...gw, we feed them to a softmax function
to calculate the final importance distribution α1, α2, ...αw.

αi =
exp(gi)∑w
j=1 exp(gj)

(3)

One advantage of this model is that it could adaptively as-
sign an importance score to each piece of memorymi accord-
ing to its semantic relatedness with the entity pair.

3.4 Relation Attention
Next, we explore the importance of all sentences for each re-
lation and learn the dependencies between relations. The fi-
nal representation of entity pair will be the composition of the
sentence representations.

Selective Attention over Instances
In this section, for relation rj-related model, we know that
the final representationRj depends on all sentences represen-
tations X = {x1, x2, ..., xn}. Each sentence representation
xi contains information about whether entity pair (head,tail)

contains relation rj for input sentence si. Therefore, the vec-
torRj can be computed as the weighted sum of these sentence
vector xi:

Rj =
n∑

i=1

βixi (4)

where βi is the weight of each sentence vector xi. Then, we
use a selective attention to de-emphasize the noisy sentence.
Hence, βi is further defined as:

βi =
exp(zi)∑n

p=1 exp(zp)
(5)

where zi is a query-based function which scores how well
the input sentence xi and the predict relation rj matches. We
follow [Lin et al., 2016] and select the bilinear form which
achieves the best performance in different alternatives:

zi = xiAvrj (6)

where A is a weight matrix, and vrj is the relation vector.

Selective Attention over Relations
Suppose there is a set R containing k relation representations
for each entity pair, i.e., R = {R1, R2, ..., Rk}. To exploit
the dependencies of all relations, we use selective attention
to calculate the similarity between each relation. In this sec-
tion, our attention function is the same as the instance-level
attention model. The input is the output of the previous layer
{R1, R2, ..., Rk}. The output R∗j is computed as:

R∗j =

k∑
i=1

γjiRi (7)

where γi is the similarity between relation Rj and Ri.

γi =
exp(hi)∑k
q=1 exp(hq)

(8)

where hi is referred as a similarity measure which scores how
well the relation Rj and Ri correlates.

hi = RiBRj (9)

where B is a weight matrix.

3.5 Distant Supervised Relation Extraction
We regard the output vector {R∗1, R∗2, ..., R∗k} in last layer of
relation-level memory network as the feature, and feed each
one to a binary classifier. Therefore the confidence scores for
each relation ri can be calculated as:

oi =WiR
∗
i + bi (10)

where matrix Wi ∈ Rd×2 is the collection of weight vectors
for each label and bi ∈ R2 is a bias. Afterwards, we apply
logistic function on each element of the score vector oi to
calculate the probability of each relation:

p(i|M, θ) =
1

1 + exp(−oi)
(11)

where M denotes the set of aligned sentences, and i ∈
{1, 2, ..., k}, k is the number of relation labels. A binary label
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vector y is used to indicate the set of true relations holding
between the entity pair, where 1 means a true relation in the
set, and 0 otherwise. Following this setting, we design a loss
function for multi-label modeling:

loss = −
k∑

i=1

yilog(pi) + (1− yi)log(1− pi) (12)

where yi ∈ {0, 1} is the true value on label i. We use
back propagation to calculate the gradients of all the parame-
ters, and update them with Adadelta [Zeiler, 2012]. Dropout
[Srivastava et al., 2014] is also employed on formula (10)
for regularization. We randomize other parameters with uni-
form distribution U ( −0.01, 0.01 ). We clamp the word em-
beddings with 50-dimensional vectors, which is the same as
[Jiang et al., 2016].

4 Experiment
We describe experimental settings and report empirical re-
sults in this section.

4.1 Experimental Setting
We conduct experiments on the basis of NYT10, a dataset
developed by [Riedel et al., 2010] and then widely used in
distant supervised relation extraction [Hoffmann et al., 2011;
Surdeanu et al., 2012]. This dataset was generated by align-
ing Freebase relations with the New York Times (NYT) cor-
pus, with sentences from the years of 2005 and 2006 used for
training and sentences from 2007 used for testing. Statistics
of the datasets are given in Table 1. It is worth noting that
we follow [Jiang et al., 2016] and use a filtered version of
NYT10 released by them. The new version removes some
relations which have very small number of instances.

Dataset Sentences Pos EPs Neg EPs relations
Training 112,941 4,266 61,460 26
Testing 152,416 1,732 91,842 26

Table 1: Statistics of the filtered NYT10 dataset, where EP denotes
entity pair.

Following previous work [Lin et al., 2016], we evaluate
our method in the held-out evaluation. The held-out evalua-
tion only compares the extracted relation instances, it gives a
rough measure of precision without requiring expensive hu-
man evaluation. We evaluate the performance of each model
with Precision-Recall curve and P@N metric.

4.2 Comparison with Existing Methods
We compare our approach with three traditional feature-based
methods and two popular neural-based methods.

Feature-based methods
(1) Mintz: [Mintz et al., 2009] proposed distant supervision
paradigm and developed a multi-class logistic regression for
classification. (2) Multir is a multi-instance learning method
that was proposed by [Hoffmann et al., 2011] with a deter-
ministic “at-least-one” decision . (3) MIML [Surdeanu et
al., 2012] is a multi-instance multi-label approach for distant
supervision using a graph model.

Figure 4: Precision-recall curves of various methods.

Neural-based methods
(1) PCNN [Zeng et al., 2015] is a convolutional neural net-
work based method for relation extraction. This method mod-
els overlapping relations by combining sentence-level rela-
tion extraction features into entity-pair-level results. (2) ATT:
[Lin et al., 2016] pointed out that distant supervision suffers
from the entity pair wrong labeling problem. They developed
a sentence-level attention model which can dynamically re-
duce the weights of those noisy instances and achieves state-
of-the-art results.

Figure 4 shows the resulting precision-recall curve in the
most concerned area. Our model is abbreviated to DMN,
which contains a 6-hops word-level memory network and a
two layer relation-level memory network. We can find that
neural-based methods are extremely strong performer and
substantially outperforms feature-based methods, demon-
strating that the error propagation brought by NLP tools will
hurt the performance of relation extraction. Among the three
neural models, DMN and ATT perform better than PCNN,
which indicates that taking the sentencelevel selective atten-
tion into account is helpful. In addition, we can see that DMN
provides superior performance to all other methods by a wide
margin, at least between 0 and 0.1 recall.

Table 2 further presents the results using P@N metric. In
accordance with our observation in precision-recall curve,
DMN is still the winner at most of the entire P@N levels.
Another conclusion is that neural network methods are also
good at predicting top-ranked results compared with tradi-
tional feature-based methods. This is probably caused by the

Top 100 Top 200 Top 500 Average
Mintz 0.77 0.71 0.55 0.676
Multir 0.83 0.74 0.59 0.720
MIML 0.85 0.75 0.61 0.737
PCNN 0.84 0.77 0.64 0.750
ATT 0.86 0.80 0.68 0.780

DMN 0.89 0.82 0.68 0.797

Table 2: Precision values for the top 100, top 200, and top 500
extracted relation instances.
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Figure 5: Effects of word-level and relation-level memory network.

imbalance of corpus and the wrong labeling problem that pre-
vent it from reaching high precision when the recall keeps
increasing.

4.3 Effect of word-level and relation-level Memory
Network

The most important components in our model is the word-
level memory network and the relation-level memory net-
work. To demonstrate the effect of these two components, we
further conduct ablation experiments, as shown in Figure 5.
DMN is our full model with the two memory networks. “w/o
word” is the system which removes the word memory part. In
this way, the sentence representation is only learned by CNN.
“w/o relation” is DMN without the relation memory part, us-
ing a sentence-level attention model instead. From the P-R
curves of these three models, we can see that different mem-
ory networks have diverse emphases. When we incorporate
the word-level memory network, most of the improvement
resides in recall range [0.0, 0.1], but remains same trend in
range [0.1, 0.2]. Compared with the word-level memory net-
work, the relation memory brings improvement almost in all
positions. Therefore, both memory networks play an impor-
tant role in our model.

4.4 Effect of the Number of Hops
In this section, we further investigate the effect of the number
of hops in word-level memory network. Results are summa-
rized in Table 3, which lists the performance peak (highest F1

Precision Recall F1
DMN-Word(1) 40.13 34.30 36.99
DMN-Word(2) 46.19 31.96 37.78
DMN-Word(3) 47.84 33.12 39.14
DMN-Word(4) 42.42 35.93 38.90
DMN-Word(5) 43.34 40.87 42.06
DMN-Word(6) 48.76 37.34 42.30
DMN-Word(7) 45.45 36.16 40.27
DMN-Word(8) 40.77 39.05 39.05

Table 3: Results of different word memory hops at the highest F1
point in the precision/recall curve on the dataset that contains groups
with at least 10 mentions.

score) for each of the models. Among all of our models from
1 hop to 8 hops, we can observe that using more computa-
tional layers could generally lead to better performance, es-
pecially when the number of hops is less than three. When the
number of hops exceeds 6, the experimental results become
worse. We suggest that the reason might lie in the gradient
vanishing problem as the memory network going deeper.

5 Related work
Distant supervised relation extraction is a fine-grained classi-
fication task in relation extraction, which aims at identifying
the semantic relation of a sentence set expressed towards an
entity pair [Mintz et al., 2009]. Most of the existing works
use machine learning algorithms, and build relation classi-
fier from sentences with automatically annotated relation la-
bels based on Knowledge Base. However, distant supervi-
sion inevitably accompanies with the wrong labeling prob-
lem. To reduce the impact of noisy data, [Riedel et al., 2010]
models distant supervision for relation extraction as a multi-
instance single-label problem, which allows multiple men-
tions for the same tuple but disallows more than one label per
object. [Hoffmann et al., 2011; Surdeanu et al., 2012] adopt
multi-instance multi-label learning in relation extraction.

Compared with feature-based methods, neural methods are
attracting growing interest primarily due to their capacity of
learning text representation from data without careful engi-
neering of features, and capturing semantic relations between
entity pair and context words in a more scalable way. [Zeng et
al., 2015] combines at-least-one multi-instance learning with
neural network model to extract relations on distant supervi-
sion data. Specifically, a study [Lin et al., 2016] has shown
promising results on building sentence-level attention for dy-
namically calculate the weights of multiple instances. De-
spite the effectiveness of these approaches, these neural mod-
els (e.g. CNN) don’t explicitly reveal the importance of con-
text evidences with regard to an entity pair and they ignore
the dependencies between relations. In this work, we develop
two memory networks that explicitly encode the context im-
portance towards a given entity pair and capture the depen-
dencies between relation labels.

6 Conclusion
In this paper, we develop a novel neural model with two mem-
ory networks for distant supervised RE. In first word-level
memory network, our model capture importances of context
words and automatically model a semantic representation of
sentences towards the entity pair. We also successfully de-
vise relation-level memory network to capture the depen-
dencies between relations and incorporating multi-instance
multi-label learning. Experimental results show that the pro-
posed approach offers significant improvements over compa-
rable methods.
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